Au 掺杂 HgCdTe 材料的光电特性

魏彦锋,孙权志,张 娟,孙瑞赟

(中国科学院上海技术物理研究所 红外成像材料与器件重点实验室,上海 200083)

摘 要: Au 掺杂是改善光伏型 HgCdTe 红外探测器性能的一种技术途径,通过 Au 掺杂来取代 HgCdTe 材料中的本征的 Hg 空位,可以提高材料的少子寿命和少子扩散长度。采用液相外延技术生 长了 Au 掺杂的 HgCdTe 外延材料, Au 的掺杂浓度为~8×10¹⁵/cm³,通过富 Hg 退火技术来抑制材料中 的 Hg 空位,Hg 空位的浓度控制在 1~2×10¹⁵/cm³。变温霍尔测试表明,退火材料中的受主杂质能级为 8~12 meV,并且与退火条件相关。采用 Au 掺杂材料和离子注入成结工艺制备了截止波长为 14 μm 的 甚长波红外焦平面器件,测试结果显示,用 Au 掺杂取代 Hg 空位掺杂,可以显著提高红外探测器的光 响应率,探测器的内量子效率可以达到 95% 以上。

关键词: HgCdTe 液相外延; Au 掺杂; 少子扩散长度 中图分类号: TN215 文献标志码: A **DOI**: 10.3788/IRLA20200231

Photoelectric characteristics of HgCdTe with Au-doping

Wei Yanfeng, Sun Quanzhi, Zhang Juan, Sun Ruiyun

(Key Laboratory of Infrared Image Materials and Devices, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China)

Abstract: Au-doping is one of the approaches to improve the performance of HgCdTe photovoltaic infrared detectors. The minority-carrier lifetime and diffusion length in HgCdTe could be improved by replacing the intrinsic Hg-vacancy with the doped Au. The Au-doping HgCdTe films were grown by liquid phase epitaxy method. The concentration of the doped Au was about 8×10^{15} /cm³. A Hg-rich annealing technique was applied to suppress the Hg vacancies in the film and the Hg-vacancy concentration of $1-2 \times 10^{15}$ /cm³ could be achieved. The acceptor energy level in the annealed material was 8-12 meV measured by the temperature dependent Hall method, which was related to the annealing condition. The IR Focal Plane Array(IRFPA) of 14 µm cut-off wavelength was fabricated using the combination of Au-doping material and Ion-implanting technique. The results show that the replacement of Hg-vacancy with Au will greatly increase the responsivity of the detector and the inner quantum efficiency of the detector could exceed 95%.

Key words: liquid phase epitaxy of HgCdTe; Au-doping; diffusion length of minority carrier

收稿日期:2020-06-10; 修订日期:2021-01-02

0 引 言

三元合金碲镉汞 (Hg1-rCdrTe) 是一种重要的红外 半导体材料, 通过调节材料的 Cd 组分, Hg1-, Cd, Te 的响 应波段可以覆盖 1~18 µm 的非常宽的范围。HgCdTe 薄膜可以采用外延技术制备(分子束外延、液相外 延、金属有机化学气相沉积等),外延时可以采用晶格 匹配的碲锌镉 (Cd_{1-v}Zn_vTe) 衬底, 从而可以生长低缺 陷、低位错的材料。由于 HgCdTe 具有一系列的优良 性能,因此在红外探测器领域中被广泛采用。近年 来,量子阱、二类超晶格等技术在红外探测器领域也 逐渐获得应用,但HgCdTe仍旧是目前制备红外探测 器的主流材料。对于中波、短波以及截止波长 10 µm 的长波光伏型 HgCdTe 红外探测器, 通常采用本征 Hg空位掺杂技术制备 P型材料,但是对于 12 μm 及 更长截止波长的甚长波器件, Hg 空位掺杂难以满足 要求,主要是因为Hg空位在材料中引入深能级复合 中心,使得材料的少子寿命短,器件的暗电流大、光响 应小。为了克服这一缺点,通常有两种方式:一种是 采用 P-on-N 器件结构,用 In 掺杂的 N 型层形成作为 吸收层, P型层采用 As 掺杂[1-4]。另外一种方式是沿 用 B⁺离子注入工艺的 N-on-P 器件构架, 但是采用 Au掺杂代替 Hg 空位掺杂^[5-6]。也有少量的文献报 道^[7],由于Hg空位材料和器件工艺具有简单和稳定 的优点,可以通过精心设计 Hg 空位的掺杂浓度和器 件结构提高器件的性能。对于 Au 掺杂技术, 以往的 文献中大多关注 Au 掺杂对降低探测器暗电流和提高 探测器阻抗的作用, Au 掺杂对探测器光响应的影响 讨论的很少,而器件的整体性能是由光响应和暗电流 等因素共同决定的。文中研究了 HgCdTe 材料的 Au掺杂以及退火技术,通过退火来抑制材料中的 Hg 空位, 在材料制备的基础上, 重点研究了 Au 掺杂 对探测器光响应的影响,发现通过 Au 掺杂并抑制材 料中Hg空位,可以显著提高探测器的响应率。

1 HgCdTe 材料 Au 掺杂机理

在 HgCdTe 中, Hg 原子很容易脱离晶格位置形成 Hg 空位, Hg 空位表现为受主杂质, 其能级在价带边以上 10~20 meV, 与 Hg 空位相关联的还有能级达到 75 meV 的深能级^[6], 深能级引起的 Shockley-

Read 复合会降低材料中的少子寿命和扩散长度,进 而影响探测器暗电流、阻抗、响应率等特性。为了提 高少子寿命,长波器件的一种工艺路线是采用掺 Au的方式来代替 Hg空位掺杂, Au原子可以占据 Hg 空位形成受主杂质,其能级在价带以上 5~8 meV, Au掺杂不会形成复合中心,材料有较长的少子寿 命^[6]。但是 Au 在 HgCdTe 的行为比较复杂,在参考文 献 [5] 中曾提到, Au 原子可以在没有 Hg 空位的 HgCdTe中单独存在,但参考文献 [8] 中的实验数据则 表明, HgCdTe 材料中的 Hg 空位浓度与 Au 的浓度有 很强的关联性,通过改变退火条件,可以调整材料中 Au和 Hg 空位的空间分布。原生的 Au 掺杂液相外 延 HgCdTe 材料中 Hg 空位浓度很高, 需要通过富 Hg 退火来调节 Hg 空位浓度。富 Hg 退火指的是在一 定的 Hg 蒸汽压下退火, 通过 Hg 蒸汽原子的扩散, 填 充部分或全部 Hg 空位, 减少与之关联的深能级复合 中心,提高材料少子寿命和扩散长度。

2 HgCdTe 材料与器件制备工艺

文中的 HgCdTe 材料采用垂直液相外延技术生 长, 衬底为 (111) 晶向的 CdZnTe 衬底。将 7N 的 Hg、 Cd、Te 原材料根据一定的配比合成为液相外延的母 液,Au掺杂采用在母液中直接掺入的方式,根据 Au 在液相外延中的分凝系数,将 5N 的 Au 掺入母液, 经过高温合成混合均匀。垂直液相外延的生长温度 为 470 ℃, 外延结束后采用富 Hg 退火工艺对材料进 行热处理来调节材料中的 Hg 空位浓度, 退火的实验 装置如图1所示。外延材料和液态Hg源封在真空石 英管中,石英管放在双温区退火炉中,通过分别控制 Hg 源和样品端的温度来进行退火。样品端的温度控 制在 250 ℃, Hg 源的温度根据需要来设定, 从而在石 英管中产生特定的 Hg 蒸汽压,目的是控制材料中的 Hg 空位浓度^[9]。图 1 的实验装置中共设定了两组退 火条件,分别为富汞1(Hg-rich1)和富汞2(Hg-rich2)。 富汞1指的是在较高的Hg蒸汽压下退火,富汞2指 的是在是较低的 Hg 蒸汽压下退火。作为对比, 还对 材料进行了富 Te (Te-rich) 退火,其过程是在氢气气氛 下退火,用 HgTe 代替 Hg 源,样品温度与 HgTe 源的 温度相同(等温退火)。

采用Au掺杂材料和离子注入工艺,制备了N-on-

Fig.1 Schematic of the Hg-rich annealing experiment

P型的光伏型红外焦平面探测器。探测器的材料参数为:材料 Cd组分为 0.214,对应于 60 K 温度下的截止波长为 14 μm,材料经过富汞 2 (Hg-rich2)条件退火,退火后 Au 的掺杂浓度为~8×10¹⁵/cm³, In 掺杂浓度为 1~3×10¹⁴/cm³。Au 掺杂的 P型材料经过 B⁺离子注入形成 PN 结阵列 (光敏元),注入区的大小为 35 μm× 35 μm,光敏元中心距为 50 μm。离子注入成结后,再经过金属化、铟柱生长等一系列工艺制备成探测器芯片。同时制备了与芯片互连用的宝石基板,宝石基板上铟柱的分布与探测器芯片上钼柱的分布一一对应。通过倒装焊技术将探测器芯片与宝石基板互连,宝石基板上的引脚分别连接芯片上不同的光敏元(N 区)和公共区 (P 区)构成探测器模块。

3 测试方法和结果

采用了多种方法对材料的性能进行测试表征。 外延薄膜的组分和厚度测量采用傅里叶变换红外透 射光谱方法,根据透射光谱中干涉峰的间距来计算薄 膜厚度,根据吸收边的位置并结合带隙与组分的关系 式来计算材料中的 Cd 组分。

材料参数和退火条件在表 1 中列出,表 1 中的 Au 掺杂浓度指的是生长时掺入的浓度,采用了不同的退 火条件对 Au 掺杂材料进行处理。材料电学参数的测 量采用变温霍尔的方法,温度变化范围为 10~300 K, 磁场强度为 1 T。根据载流子浓度随温度的变化关 系,可以得出不同退火条件下 Au 在 HgCdTe 材料中 的激活能,测试结果如图 2 所示。图 2 中标明了每个 样品的编号、退火条件和对应的激活能。退火条件包 括富汞 1(Hg-rich1)、富汞 2(Hg-rich2) 和富 Te(Te-rich) 退火,可以看到,在不同的退火条件下,杂质激活能也 不同。

材料中 Au 的分布采用二次离子质谱 (SIMS) 方 法来测量。图 3 给出了经"富汞 2"退火后材料中 Au

的分布,其中横坐标 0 的位置是材料表面,外延层的 厚度为 11 μm,大于 11 μm 的部分为衬底。可以看到 Au 在材料中的分布不均匀。

探测器光响应的测量采用黑体响应测量方法,实验装置如图4所示。探测器模块安装在液氮杜瓦中, 500K温度的黑体发出的红外辐射经调制盘照射在探

表1 材料参数和退火条件

Tab.1 Parameters of the samples used for annealing

Samples	Cd composition	Concentration of doped Au	Annealing condition
LPEV0958A	0.219 7	8.0E+16	Hg-rich1
LPEV0956	0.216 0	8.0E+16	Hg-rich1
LPEV1042C	0.217 7	1.0E+16	Hg-rich2
LPEV0978D	0.222 3	1.0E+16	Hg-rich2
LPEV1022D	0.218 7	1.0E+16	Hg-rich2
LPEV0804C	0.218 4	1.0E+16	Te-Rich

图 2 不同退火条件下的变温霍尔测试结果

第4期

测器光敏元上,调制盘频率为800 Hz,探测器输出的 光电流信号送入锁相放大器,再经过前置放大器转换 为电压信号,经数据采集模块由计算机读出。

图 4 黑体响应实验装置示意图

Fig.4 Schematic of the blackbody response measurement

为了研究器件的光响应特性,在探测器模块上制 作了特定的结构,如图 5 所示。在图 5 中,挑选出九 个相邻的光敏元,分别标记为 D1~D9,每个光敏元上 分别引出金属电极,这九个金属电极连接九个光敏元 PN 结的 N 区, PN 结的 P 区作为公共端,通过这些金 属电极来测试光敏元的光响应特性。表 2 给出了光 敏元 D1 的黑体响应电压,测试时光敏元偏置电压 为零,制备此器件的材料采用富汞 2 (Hg-rich2) 退 火。可以看到,单独测量 D1 时,黑体响应电压为 1 119 μV。但是,如果在测试时分别将 D2、D3、D4、 D5、D6、D7、D8、D9 对公共端短接,D1 的黑体响应 电压会发生明显的变化。例如,将 D2 对公共端短路,

D1 的黑体响应电压会从 1 191 μV 降低到 707.9 μV, 下降了 441.1 μV。

表 2 光敏元 D1 的响应电压以及临近光敏的元的影响

Tab.2 Response voltage of pixel D1 and the variations caused by the pixels nearby

Label of the pixel	Test conditions	Response voltage $/\mu V$
	-	1 119
	D2 is short-circuited	707.9
	D5 is short-circuited	696.1
	D3 is short-circuited	764.4
D1	D7 is short-circuited	791
	D4 is short-circuited	789.7
	D8 is short-circuited	798.5
	D6 is short-circuited	773.6
	D9 is short-circuited	809.5

同样,表3列出了中心光敏元 D6的响应电压, 当 D6周围的八个光敏元开路时,D6的响应电压为 1 182 μV,如果将 D6周围的八个光敏元全部对公共 端短接,再测量 D6的响应电压,测量值为 94.7 μV,响 应电压下降超过了一个数量级。

表 3 光敏元 D6 的响应电压以及临近光敏元的影响 Tab.3 Response voltage of pixel D6 and the variation caused by the pixels nearby

	U I U	-
Label of the pixel	Test conditions	Response voltage/µV
D(-	1 182
Do	D1-D5, D7-D9 are short-circuited	94.7

4 结果分析与讨论

图 2中,不同的退火条件是根据汞空位浓度与 Hg分压的关系^[9]来控制 Hg 蒸气压。退火条件"富汞 1"是在较高的 Hg 蒸汽压下退火,材料中的 Hg 空位 浓度为~10¹⁴/cm³,可以认为材料中的 Hg 空位已经被 消除。退火条件"富汞 2"是在较低的 Hg 蒸汽压下退 火,材料中的 Hg 空位为~10¹⁵/cm³。在"富 Te"退火条件 下,由于 Hg 蒸汽压不足,材料中会有较高浓度的 Hg 空位 (~10¹⁶/cm³)。可以看到,随着 Hg 蒸汽压的不同, 材料中的杂质激活能也在变化,在较高 Hg 蒸汽压下 退火, Au 激活能为 5~8 meV, 与参考文献 [10] 中的结 果一致。在较低的 Hg 压下退火, 激活能为 8~12 meV, 这是因为材料中还存在低浓度的 Hg 空位, Hg 空位的 能级为 10~20 meV, Au 和 Hg 空位同时影响变温霍尔 曲线, 提高了表观的激活能。在富 Te 条件下退火, 材 料中 Hg 空位的浓度较高, 相应的激活能也较高, 为 13.4 meV, 表现为 Hg 空位掺杂为主导。

从图 3 的二次离子质谱 (SIMS) 测试结果可以看 到,在低Hg压退火(Hg-rich2)材料中,Au的浓度为 5×10¹⁵~2×10¹⁶/cm³,并且表面的浓度比较低,内部浓度 比较高。这是因为,在退火过程中Hg原子从表面向 内部扩散,引起Hg空位的浓度呈现梯度,进而导致 与Hg空位相关联的Au原子也呈梯度分布。从图3 中还可以看出,在材料表面 0~1 µm 的范围内, Au 的 浓度很高,浓度曲线上有一个明显的尖峰。这一尖峰 的主要原因是 Au 原子容易在缺陷较多的地方聚集 (吸杂效应),材料表面的缺陷和杂质含量相对较多,使 得 Au 原子的浓度也较高。另外, 在接近衬底的界面 处 (~11 µm), Au 浓度曲线也出现了一个尖峰, 这同样 是由于界面处的杂质和缺陷引起的。在材料中1~ 10 µm 的范围内, Au 的平均浓度为 8.6×10¹⁵/cm³。采 用霍尔测试,同一样品在 77 K 温度下的霍尔浓度为 1×10^{16} /cm³, 如果假定霍尔浓度约等于Au浓度和 Hg 空位浓度之和,则可以推断出材料中的 Hg 空位浓 度处于一个比较低的水平,根据多轮实验的结果,采 用上述的低 Hg 压退火,可以将 Hg 空位的浓度控制 在 1~2×10¹⁵/cm³。表 2 中的探测器, 制备时采用的是 低 Hg 压退火 (Hg-rich2), 将 Hg 空位浓度控制在较低 的水平来提高少子寿命,并且可以保持合适的 Au 掺 杂浓度。

从图 5 和表 2 的黑体响应测量结果可以看出, D2~D9 这八个光敏元对 D1 有屏蔽作用。当测量 D1 的响应电压时, D1 周围受光区域产生的光生载流 子会扩散到 D1 形成光电流。如果光生载流子的扩散 长度大于 D1 到 D2 的距离, 那么当 D2 对公共端短接 后, D2 就会吸收附近的载流子, 阻止这部分载流子向 D1 扩散, 从而导致 D1 的光信号减小。从表 2 中还可 以看出, 与 D1 距离相同的光敏元对 D1 的屏蔽效果 也相近, 例如, D2、D5 分别对公共端短接, 所测得的 D1 的光电压信号基本一致。离 D1 越远, 则屏蔽效果 越小。例如,当 D9 对公共端短接后,D1 的响应电压 变化了 309.5 μV,小于 D2 对公共端短接后的变化值 411.1 μV。值得指出的是,D1 与 D9 之间的中心距为 141 μm,这表明材料中光生载流子的扩散长度很长。

在表 3 中, 将 D6 周围的八个光敏元短接后, D6 的黑体响应电压下降了一个数量级, 这代表了面 阵器件中单个光敏元真实的光响应, 消除了载流子的 横向扩散效应。可以根据实验数据来计算光敏元 D6 的量子效率。光伏型探测器的黑体响应率理论值 (blackbody responsivity)可以表示为:

$$R_{\rm bb} = \frac{\int_0^{\Lambda_c} R_{\lambda} [M_{\rm e}(\lambda, T) - M_{\rm e}(\lambda, T_0)] \mathrm{d}\lambda}{\sigma(T^4 - T_0^4)} \tag{1}$$

式中: $R_{\lambda} = \eta e_{hc}^{\lambda}$ 为光谱响应率 (spectral responsivity), η 为外量子效率; $M_{e}(\lambda, T)$ 为黑体辐射出射度; σ 为斯特 藩-玻耳兹曼常数; T为黑体温度; T_{0} 为调制盘温度; λ_{c} 为探测器截止波长。外量子效率 η 可以表示为光吸 收效率 η_{λ} 和内量子效率 η_{h} 的乘积:

$$\eta = \eta_{\mathcal{H}} \eta_{\beta} \tag{2}$$

光吸收效率 η_{*} 可以表示为:

$$\eta_{\mathcal{H}} = T_{\text{ZnS}} \cdot (1 - R_{\text{surf}}) \cdot (1 - e^{-\alpha_{\lambda} \cdot t})$$
(3)

式中: T_{ZnS} 为杜瓦窗口 (ZnS)的透射率,实测值为 70%; R_{surf} 为探测器芯片表面反射率,实测值为 30%; α_{λ} 为 HgCdTe 材料的吸收系数;t为探测器吸收层的厚 度,这里不考虑入射光的散射和多次反射的情况。假 定内量子效率 η_{Ph} 为常数,不随波长变化。根据公式 (1)可以计算出探测器黑体响应率的理论预期值为:

$$R_{\rm bb} = 2.331 \eta_{\rm fs} ({\rm A/W}) \tag{4}$$

同时,根据测量得到的 D6 的响应电压,以及实验 装置的几何配置和测试参数,可以得到 D6 黑体响应 率的实验值,结果为 2.327 (A/W),将实验值与公式 (4)的理论值相比较,可知探测器光敏元的内量子效 率η_A=99.8%,这表明 D6 周围的光生载流子基本全部 被 D6 吸收转变为光电流,这也表明 Au 掺杂材料的 少子扩散长度足够长,吸收区内的光生载流子几乎全 部扩散到 PN 结区形成光电流。需要说明的是,在公 式(1)中,采用的是理想化的一维模型,而实际的探测 器是三维结构,并且材料的吸收系数、厚度、芯片表 面反射率等参数在计算过程中也会引入误差,因此, 建立更准确的模型并采用更精确的参数值会得到更 准确的结果。

作为对比实验,采用富 Te (Te-rich) 退火材料制备 了器件,采用同样的实验装置和实验条件,器件的响 应电压明显减小,D6 响应电压 (D6 周围的八个光敏 元开路) 仅为 60 μV,将 D6 周围的光敏元短接后,响 应电压下降到 43 μV,计算得到内量子效率为 41%。

在甚长波器件制备中,材料组分控制在 0.214~0.216,退火后的 Au 掺杂浓度控制在~1×10¹⁶/cm³,如果 采用更高的 Au 掺杂浓度 (大于 2×10¹⁶/cm³),探测器的 遂穿漏电增大,器件性能变差。如果 Au 浓度太低 (小 于 5×10¹⁵/cm³), PN 结的耗尽区展宽,产生复合电流增 加,器件性能也会变差。

Au 掺杂可以提高 HgCdTe 探测器的光响应率, 此外还会影响探测器的暗电流和阻抗。验证了两种 材料的长波红外焦平面器件,探测器 A 采用富 Hg 退 火材料 (Hg-rich2),探测器 B 采用富 Te 退火 (Te-rich) 材料,芯片钝化采用常规的 ZnS/CdTe 双层钝化,芯片 与读出电路采用倒装焊互连。探测器 A 截止波长 13.2 μ m@77 K,优值因子 $R_0A = 0.27 \Omega \cdot cm^2$,峰值探测 率 $D^* = 4.3 cm \cdot Hz^{1/2}/W$ 。探测器 B 截止波长为 12.2 μ m @77 K,优值因子 $R_0A = 1.69 \Omega \cdot cm^2$,平均峰值探测率 为 $D^* = 2.9 cm \cdot Hz^{1/2}/W$ 。可以看到,这两个截止波长 接近的探测器,波长越长,阻抗越低,暗电流越大,表 面钝化越困难。尽管探测器 A 的阻抗低,但是其峰值 探测器更高,说明 Au 掺杂确实提高了器件的内量子 效率。

探测器的暗电流除了与材料少子寿命有关,在很 大程度上还取决于器件工艺,例如离子注入、表面钝 化^[11-12]、芯片倒焊等。但器件的光响应则主要取决于 材料的光吸收系数和光生载流子的扩散过程。因此, Au 掺杂材料中少子扩散长度的增加对器件光响应 的影响更为明显。但是器件整体性能取决于响应率 和暗电流两个方面,因此需要在器件工艺方面进行 优化,并结合材料的 Au 掺杂工艺,才能从整体上提高 器件性能。通过优化工艺,采用文中的 Au 掺杂材料 和富 Hg 退火技术,研制了 320×256 规模的甚长波红 外焦平面探测器,光敏元中心距为 30 μm,60 K 温度 下截止波长为 14.8 μm,平均峰值探测率为 8.4× 10¹⁰ cm·Hz¹²/W,有效像元率为 97%。

5 结 论

光伏型红外焦平面探测器广泛采用 P型 HgCdTe 材料作为吸收层, HgCdTe 中的 Hg 空位在材料中会形 成深能级复合中心, 能级深度可达 75 meV, 从而降低 材料的少子寿命, 这种影响在长波和甚长波器件中尤 为显著。为了克服 Hg 空位的影响, 可以采用具有浅 受主能级的 Au 来替代 Hg 空位掺杂, 从而提高少子 寿命和少子扩散长度。文中采用富汞退火工艺来抑 制 Au 掺杂材料中的 Hg 空位浓度, Hg 空位浓度可以 控制在 1~2×10¹⁵/cm³, 受主杂质能级为 8~12 meV。通 过 Au 掺杂技术和富 Hg 退火技术相结合, 可以制备 出 Hg 空位浓度低、少子扩散长度长的外延材料, 采 用这种材料制备的截止波长为 14 μm 的 N-on-P 型红 外探测器, 其响应率比 Hg 空位材料制备的器件有显 著的提高, 通过比较测试结果和理论分析, 表明探测 器的内量子效率可以达到 95% 以上。

参考文献:

- Baier N, Cervera C, Gravrand O, et al. Latest developments in longwavelength and very-long-wavelength infrared detection with pon-n HgCdTe [J]. *Journal of Electronic Materials*, 2015, 44(9): 3144.
- [2] Pere-Laperne N, Taalat R, Berthoz J, et al. Improvements of long wave p on n HgCdTe infrared technology[C]//SPIE, 2016, 9933: 90330H.
- [3] Hanna S, Eich D, Mahlein K-M, et al. MCT-based LWIR and VLWIR 2D focal plane detector arrays for low dark current applications at AIM [J]. *Journal of Electronic Materials*, 2016, 45(9): 4542.
- [4] Eich D, Schirmacher S, Hanna S, et al. Progress of MCT detector technology at AIM towards smaller pitch and lower dark current [J]. *Journal of Electronic Materials*, 2017, 46(9): 5448.
- [5] Wenisch J, Eich D, Hanna S, et al. Two-dimensional longwavelength and very long-wavelength focal-plane arrays at AIM [J]. *Journal of Electronic Materials*, 2010, 39(7): 846.
- [6] Li Qing, Hu Weida, Lin Chun, et al. Dark current characterization of Au and Hg-vacancy hybrid doped p-type epitaxy long-wavelength HgCdTe infrared photodetectors[C]// SPIE, 2018, 10624: 106240R.
- [7] Maxim Vitalievich Yakushev, Dmitry Vladislavovich Brunev,

Vasilij Semenovich Varavin, et al. A 288×4 linear-array photodetector based on Hg vacancy-doped HgCdTe with longwave cutoff wavelength greater than 12 μm [J]. *Infrared Physics* & *Technology*, 2015, 69: 107.

- [8] Sun Quanzhi, Yang Jianrong, Wei Yanfeng, et al. Characteristics of Au migration and concentration distributions in Au-doped HgCdTe LPE materials [J]. *Journal of Electronic Materials*, 2015, 44(8): 2773.
- [9] Vydyanath H R, Hiner C H. Annealing behavior of undoped Hg_{0.8}Cd_{0.2}Te epitaxial films at low temperature [J]. *J Appl Phys*, 1989, 65(8): 3080.
- [10] Mahlein K M, Bauer A, Bitterlich H, et al. Next generation IR sensor technology for space applications at AIM[C]//SPIE, 2008, 7106: 71061J.
- [11] Haakenaasen R, Selvig E, Heier A C, et al. Improved passivation effect due to controlled smoothing of the CdTe-HgCdTe interface gradient by thermal annealing [J]. *Journal of Electronic Materials*, 2019, 48(10): 6099.

[12] Lu Qi, Wang Xi, Zhou Songmin, et al. Effects of different passivation layers on RV characteristics of long-wave HgCdTe gate-controlled diodes [J]. *Semicond Sci Technol*, 2020, 35(9): 095003.

第一作者简介:魏彦锋(1971-),研 究员,理学博士。研究方向为红外 半导体材料与红外探测器技术,包 括高性能红外材料的外延生长以 及性能表征,长波以及甚长波红外 焦平面技术,高灵敏度短波红外焦

平面技术等。承担了国家自然科学基金、总装光电子 预研、航天工程等多项科研任务,在相关学术领域发 表学术论文 40 余篇。曾获国家科学技术进步二等 奖,上海科技进步一等奖,中科院杰出科技成就奖(研 究集体)。